Posted on Leave a comment

Immunodominant Epitopes Identified for Designing Peptide-Based Vaccine Against SARS-CoV-2

There are currently no licensed vaccines available for COVID-19.  While several antiviral drugs have been tested, none has proved to be completely effective against the disease. In a study just published in the journal MDPI Vaccines, researchers from Bar-Ilan University have identified a set of potential immunodominant epitopes from the SARS-CoV-2 proteome.  These epitopes are capable of generating both antibody- and cell-mediated immune responses. The findings of this work may thus contribute to developing a peptide vaccine against SARS-CoV-2 infections which can stop the COVID-19 outbreak and future pandemics caused by coronaviruses.

Led by Dr. Milana Frenkel-Morgenstern, Head of the Cancer Genomics and BioComputing of Complex Diseases Lab at Bar-Ilan University’s Azrieli Faculty of Medicine, the researchers took an immunoinformatics-based computational approach to mine the protein content of SARS-CoV-2 and subsequently identified immunodominant epitopes of the virus. Immune responses that are based on specific immunodominant epitopes involve the generation of both antibody- and cell-mediated immunity against pathogens presenting such epitopes. Such immunity can facilitate fast and effective elimination of the pathogen.

The team of researchers that also includes Sumit Mukherjee, Dmitry Tworowski, Rajesh Detroja and Sunanda Biswas Mukherjee, identified 15 potential immunogenic regions from three proteins of SARS-CoV-2, and mapped 25 immunodominant epitopes on other SARS-CoV-2 proteins. To confirm that these epitopes could serve to provide immunity to a global population, the percentage of individuals that express a major histocompatibility complex (MHC) capable of recognizing any of these epitopes was determined. Accordingly, seven epitopes were deemed to be present in more than 87% of the worldwide virus-affected population. Further structural molecular docking analyses estimated the binding interaction of these potential epitopes with human MHC. Complete lists of MHC proteins that recognize each epitope have been generated and are presented in both the submitted manuscript and a provisional US patent application (US 63/034.416).

The seven epitopes were tested using multiple tools to verify their non-allergenic and non-toxic natures, as well as to demonstrate that they carry a low risk of triggering any autoimmune responses. Together, such results indicate that these seven epitopes represent potentially effective vaccine candidates. Indeed, the development of vaccines using these immunodominant epitopes could activate both humoral and cellular immune responses in humans comprising a major fraction of the world’s population.

This study was funded by grants from the PBC Fellowship Program and the Data Science Institute (DSI) at Bar-Ilan University. The Frenkel-Morgenstern group currently seeks partners in industry as well as at medical centers to advance their efforts at developing a peptide-based vaccine for COVID-19.

Posted on Leave a comment

Researchers Develop New Technology to Produce Powerful Disinfectant Based on Tap Water


Researchers at Bar-Ilan University have developed a new and revolutionary technology to produce a powerful disinfectant based on tap water. According to the researchers, the disinfectant doesn’t harm the environment and has many advantages: The material is effective and safe to use, is harmless to humans who smell or drink less than ten liters, and does not contaminate groundwater. The material has the ability to destroy all types of bacteria, spores and viruses, including bacteria that are resistant to antibiotics. The technology will replace the need for chemicals harmful to health and the environment, such as bleach, septolTM, chlorhexidine, ammonia, and more, and will eliminate the excessive and  use of contaminating disposable plastic.

The materials currently available on the market, which can be classified as effective anti-bacterial, require extra caution while using. For example, bleach exists in almost every household and hospital, but no one would think of washing a cutting board, let alone vegetables, or using it in the vicinity of children. If we take this a step forward, no one would think of “spraying” drops of alcohol from the opening of an air conditioner when a member of a household has the flu in order to prevent infection of the rest of the family.

The researchers who developed the technology are from the laboratory of Prof. Doron Aurbach, an international expert in electrochemistry from Bar-Ilan University’s Chemistry Department. The invention is patented. Patent registration in Israel and several countries around the world was handled by BIRAD Research and Development Company Ltd., which commercializes Bar-Ilan University inventions.

Our production process explain the researchers, also takes advantage of oxygen dissolved in water and existing salts, unlike the others. “Moreover, unlike other technologies that include two large cells with a membrane separating the cells, which makes these devices large, cumbersome and costly, we were able to produce simple inexpensive low-cost, membrane-free systems that can be embedded even in a tube. All of this was achieved through the knowledge we gained during this long-term study.”

The platform on which the technology is based enables the creation of a variety of solutions for the creation of spaces clean from bacteria micro-organism: for example: spray – aerosols (for disinfecting surfaces, appliances, beds, closets, bathrooms, toilets, etc.), containers for immersion (washing devices, hands etc.), disinfectant wipes, hand washing, shoe washing, buckets for washing and disinfecting floors, air-conditioning systems, washing machines, and dry fog air-purifiers.

So, how does it work? By designing an array of nanometer-shaped electrodes with unique surface properties. The meeting between water and electrode creates a cleaning material in a unique aquatic environment. The combination of these compounds gives rise to an effective antibacterial capability for microorganisms (bacteria, viruses and spores), while at the same time safe for macro organisms (larger bodies such as our skin cells).

“The ability to produce electrodes in a variety of shapes and textures makes the technology suitable to almost any application – from a ‘cassette’ in an air conditioner, a container for washing fish and meat, to disinfection and removal of pesticides from vegetables and fruit, mobile spray, a device for manufacturing disposable antibacterial cloths and many other applications,” emphasizes Dr. Eran Avraham, who developed the technology.  “Imagine a situation in which you are at a busy mall and are interested in using the public bathroom. All you have to do is take out the compact spray bottle, access the nearest tap, and press the power button. Now you have a disinfectant that will allow you with a simple spray to sterilize the toilet and bathroom space and be protected.”

Dr. Izaak Cohen, who co-developed the technology, adds: “Today’s disinfectants are problematic, unlike our unique disinfectant technology, although they are very commonly used in laboratories, clinics and hospitals. For instance – Septol, is very common in hospitals, however, it is expensive and dries the skin. Today’s Septol is problematic and its use is questionable because there are more and more reports of bacteria that have developed resistance to it. Chlorhexidine, which is commonly used to disinfect medical equipment and surfaces, is flammable, explosive and dangerous to electrical products, and it has been reported that there are bacteria that have developed resistance to it as well. Quaternary ammonium, which is used for disinfecting laboratory equipment, is toxic. The chemicals of various kinds are substances that damage both the quality of the devices and their shelf life, as well as damage groundwater”.

Entrepreneur Barak Dror Vanderman has extensive experience in entrepreneurship, management and business development, seeking breakthrough technologies, and worked on the commercialization and establishment of the company AqooA Solutions, Eco Sanitizing Technologies.

We are on the brink of revolution by making the most effective green disinfectant available to the entire population and medical institutions. Technology that will save many lives, save the economy a lot of money, will eliminate the use of hazardous chemicals that harm the environment such as bleach, whose sales reach around $91 billion a year. “We developed the technology in several prototypes and we are in the final stage in terms of R&D. We are currently embarking on a round of fundraising and will then focus on electrical engineering, electronics and product design,” notes Wanderman.

Recently, an experiment was conducted in one of Israel’s hospitals to test the efficacy of the material in real-life conditions. Bacterial pathogens were taken from patients in various departments. The bacteria were selected were resistant to antibiotics, resistant to a watery environment and these are bacteria that “infest” hospitals. The results were unequivocal. After just three minutes of exposure to the disinfectant material all the bacteria were destroyed, in some cases even a few seconds was enough to kill the bacteria.  Now, imagine that in a hospital room, the curtains, the counters, and even the IV bar frequently come into contact with the disinfectant.

During the course of the research, several models of prototypes (mobile spray and vegetable and fruit processing bottles) were developed. With the help of BIRAD, the entrepreneur and the researchers are currently embarking on a round of fundraising and locating investors, focusing on electrical engineering, electronics and product design.

Dr. Frances Shalit, VP of Business Development at BIRAD, explains the importance of the invention: “There are many antibacterial disinfectants on the market, but this material is based on water, cheaper than them, three times more effective, seven times less toxic for humans, preserves these capabilities for much longer (months and years) and covers a large variety of bacteria. ” Dr. Shalit is convinced that many industries will want to add this material to their products and gain these important results at a low cost.

For further information, contact: Merav Burstein:  – 052-2229330 –


Posted on Leave a comment

Introducing PROSPERA®: A New Sweet Basil Hybrid Resistant to Downy Mildew

Researchers of Bar-Ilan University, in cooperation with Genesis Seeds Ltd., have developed a hybrid of basil, the culinary herb, which is completely resistant to Downy Mildew, a devastating disease caused by a fungus-like pathogen. The new patented product, contains no pesticides and will provide much-needed relief to farmers and consumers worldwide.  

In recent years an epidemic of Downy Mildew (DM) has caused severe damage to sweet basil (Ocimum basilicum) crops all over the world. The cause of the epidemic is a leaf fungus called Peronospora belbahrii. Symptoms of infected plants include deformed leaves, chlorotic lesions on leaves and dark spores on the lower leaf surface.

DM was first discovered in basil in Switzerland in 2003 and soon after spread throughout the world via fresh material transport, infected seeds and even drifting winds. Interestingly, aside from one case in Uganda in 1933, DM was never before seen in basil. In Israel, it appeared in 2011 with unprecedented symptoms that were found to be caused by Peronospora belbahrii. Until now no varieties of basil have been found to be genetically resistant to DM.

DM poses a threat to the basil industry, mainly because of the fact that the length of time it is stored creates optimal conditions for its onset. In many cases the disease goes unnoticed because it remains “dormant” during harvest and emerges only later. Today, farmers use mainly pesticides to cope with the disease.  But even so, within less than a year of the onset in Israel, the patogen developed resistanceto the majority of pesticides, making them ineffective at all. Regulatory obstacles in introducing new products into the market and restrictions on some pesticides which leave a harmful residue on the crop have exacerbated the problem.

Israel is one of the major winter exporters of fresh herbs to Europe, Russia and the eastern United States. The Israeli fresh herb market is estimated to export nearly 70 million Euros per year, 50% of which is based on sweet basil.  Most of the basil in Israel is grown in the country’s hottest regions — the Arava, Jordan Valley, Beit Shean Valley and the Negev.

The severe intensity of the epidemic in Israel brought the Phytopathology Laboratory in the Mina and Everard Goodman Faculty of Life Sciences at Bar-Ilan University, headed by Israel Prize winner Prof. Yigal Cohen and Dr. Yariv Ben-Na’im, to investigate how the disease is transmitted. As many varieties as they screened, they were unable to detect any sweet basil line resistant to DM.  However, various degrees of resistance were found in wild species of the genus Ocimum.  These species differ from sweet basil in both appearance and aroma, and show interspecific crossing barrier due to genetic remoteness.

Genesis Seeds, specialists for more 20 years in manufacturing, marketing and cultivating seeds including basil, joined the Bar-Ilan researchers in financing and facilitating breed-oriented research aimed at transmitting DM resistance from wild into sweet basil varieties.  New funding by Genesis facilitated concentrated efforts towards a new protocol to obtain interspecific hybrids.  They produced a few hybrid plants that are both DM resistant and fertile. The breakthrough enabled the researchers to obtain genetic material that constitutes the foundation for a broad breeding program.

Genesis Seeds and the Bar-Ilan team, represented by the Bar-Ilan Research and BIRAD Research & Development Company Ltd, the commercializing company of the University, are currently commercializing new sweet basil cultivars marketed under the name “Prospera” (a play on words between the disease Peronospora and prosperity).  Prospera is currently being tested in Israel and around the world and holds promise for growers of basil and consumers worldwide.

“BIRAD is proud to utilize the extensive knowledge and experience of Dr. Cohen, a world-renowned expert on phytopathology at Bar-Ilan University and recipient of the Israel Prize for Agricultural Research, in order to improve agriculture in Israel and around the world.  His remarkable developments have helped remedy global problems that plague the world of agriculture, such as plant diseases caused by pests. We hope to perfect his and his team’s novel technique to develop resistance to other diseases as well,” said Dr. Frances Shalit, Vice President of Business Development for BIRAD.

Registration and commercialization of the patent is being handled by BIRAD.

For further information, contact: Merav Burstein:  – 052-2229330 –

Posted on Leave a comment

Isotopia Company and Prof. Rachela Popovtzer of Bar-Ilan University are developing an innovative method for diagnosis and treatment of cancer

The Israeli Isotopia Company, in collaboration with Prof. Rachela Popovtzer of Bar-Ilan University, is conducting a joint study to develop a radioactive marker, based on nanoparticles, for the detection of cancer.   The goal of this research is to facilitate, for the first time, the distinction between tumors and inflammation.

The most common imaging method for diagnosing and monitoring cancer today is the positron emission tomography (PET) scan used with radioactive contrast material fluorodeoxyglucose (FDG). But FDG gives high rates of false positives, which lead to false therapeutic observations and expensive costs for health care systems. The main problem is that the test can detect not only tumors, but also inflammation, making it difficult to differentiate between cancerous growths and inflammation.

The material being developed by the researchers is a radioactive contrast agent based on nanoparticles.  In addition to identifying, imaging and tracking cancer tumors, these nanoparticles make it possible to make an unequivocal distinction between tumor and inflammation.

“The technology we are developing is significant because it will enable physicians to make a better diagnosis,” said Dr. Eli Shalom, CEO of Isotopia Molecular Imaging.  “Another advantage is that it will be used in existing PET/CT centers and rely on equipment that’s already in place,  so it’s very economical.”

Dr. Shalom said that the vision in this development is far beyond specific cancer identification.  “The method we are developing can be combined with Lu177  for therapy as well as the imaging.  This is an innovative field called Theranostics (therapy + diagnostics). In the Theranostics model, we use the same molecules and radiolabel them for imaging and therapy each time with a different isotope. “. Isotopia, which today focuses on the development of Theranostic products for prostate cancer, will be an excellent platform for bringing development to the Global market

The research is being carried out within the framework of the “Magneton” program of the “Innovation Authority” (formerly the “Bureau of the Scientist”), which funds research aimed at encouraging the transfer of technological know-how accumulated in academia for innovative industry products. Fundraising for Magneton (for Bar-Ilan University) was overseen by Birad Research and Development Company Ltd.”.

About Isotopia
Isotopia, the nuclear pharmacy with knowledge and experience in the radiochemical connection, has extensive experience in developing processes and applying them for molecular imaging. The Isotopia development team is a multidisciplinary team consisting of nuclear pharmacists, radiochemists, nuclear engineers and physicists.

The experienced Isotopia team, together with its radio-nuclear pharmacy and cyclotron facility, are a well-established platform for development. Isotopia conducts research and development initiatives in cooperation with leading medical centers and with leading research laboratories in Israel. Isotopia creates collaborations between the scientific and medical community to further develop and experiment with new markers for imaging applications and molecular therapy. Isotopia develops strategic partnerships in procurement, production and international sales of Isotopes in the manufacture of cyclotron, radio-pharmaceuticals and related molecular imaging technologies, as well as new developments in the field of radiotherapy.

About Birad – Research & Development Company Ltd. The commercializing company of Bar-Ilan University, which promotes collaborations, corporations and alliances to manage the intellectual property, and technology commercialization by creating risk and licensing, promoting scientific service agreements through the technological knowledge and infrastructure of the University for the benefit of members of the industrial community, and outsourcing services for the business sector as part of the Division of Scientific Services.

For more information: Merav Burstein. Tel: 0773643534.

Posted on Leave a comment

CogniFiber has been selected to take part in Intel’s Ingenuity Partner Program (Intel IPP)

As part of the program, CogniFiber will be mentored by experts from Intel’s business organizations, will be exposed to state-of-the-art technology, along with an educational infrastructure and local and international events.

CogniFiber has been chosen to participate in the fourth cycle of Intel’s prestigious program for leveraging startups. The program’s framework is based on a demo and POC which is built on defining joint project goals for CogniFiber and Intel. The company will gain mentoring by experts from Intel’s business organizations, will be exposed to state-of-the-art technology, together with an educational infrastructure and local and international events.

Cognifiber is a leader in the field of photonic computing, the emerging technology of the next decades. The primary development of the technology on which the company was founded was done by Dr. Eyal Cohen, who performed a post-doctorate research in the laboratory of Prof. Zeev Zalevsky, from the Faculty of Engineering, in Bar-Ilan university in collaboration with Dr. Mickey London from The Interdisciplinary Center for Neural Computation (ICNC), The Hebrew University of Jerusalem, as an additional advisor. Dr. Eyal Cohen approached the two with a proposal to carry out the research and with Prof. Zalevsky’s extensive experience, promoted the research and its commercialization through BIRAD, Research & Development company Ltd. and the Deputy President of Bar-Ilan university.

Dr. Eyal Cohen together with Prof. Zalevsky and Ms. Keren Levy, who served as a business advisor for the company, co-founded the company. Dr. Eyal Cohen, acts as the leading entrepreneur and company CEO, Prof. Zeev Zalevsky is the company CTO and Keren Levy acts as the company COO.

CogniFiber implements advanced algorithms such as machine learning and deep learning neural networks within unique optic fibers, which enable up to 10,000x acceleration in computation rate, coupled with a staggering 10x-100x reduction in power consumption and heat dissipation, at these computation rates. CogniFiber’s photonic devices will not only revolutionize the world of AI and computing, but will also make AI cheaper, more mobile and more accessible. In-fiber photonic computing devices can deliver a solution for the ever-growing processing needs, they are easy to manufacture, scalable, fault-resistant, and could be connected to any existing communication platform.

Intel’s IPP program is open (every cycle) for about 10 companies and offers them 6-8-months of professional mentoring framework to improve their technology and products, while leveraging on Intel’s technological resources, global presence, and vast network of business connections, in preparation for a successful market penetration. The program is in collaboration with Intel Capital, one of the world’s biggest Venture Capitals, which enables entrepreneurs direct access to this track.

The IPP program, which began operating in 2015, has accompanied about 30 companies, which raised a total of 281 million dollars between them in the past three years. 93% of the companies are still active, and Intel does not demand or take equity or percentages.

With the purchase of Mobileye, Replay, and positioning Intel as a data company, Intel is without a doubt a central player in all emerging and exciting technologies of today’s industry and acts as an excellent source for entrepreneurs who want to accelerate their product or technology.


Birad – Research & Development Company Ltd. the commercializing company of Bar-Ilan University, which promotes innovative technology commercialization, invented by university researchers, encourages scientists to promote their researches and expand them towards industrial and implementational initiatives.

Additional details at the company’s site:

For additional info regarding CogniFiber:

For additional details: Merav Burstein – 052-2229330 –



Posted on Leave a comment

Researchers Invent Nano-Drops That Improve Nearsightedness and Farsightedness


Nano-Drops May Offer New Alternative to Current Methods of Vision Correction

Ramat Gan, Israel — A revolutionary, cutting-edge technology, developed by researchers at Bar-Ilan University’s Institute of Nanotechnology and Advanced Materials (BINA), has the potential to provide a new alternative to eyeglasses, contact lenses, and laser correction for refractive errors.

The technology, known as Nano-Drops, was developed by Dr. David Smadja (Ophthalmologist from Shaare Zedek Medical Center), Prof. Zeev Zalevsky, from Bar-Ilan’s Kofkin Faculty of Engineering, and Prof. Jean-Paul Moshe Lellouche, Head of the Department of Chemistry at Bar-Ilan. A related patent on this new invention was recently filed by Birad – Research & Development Company Ltd., the commercializing company of Bar-Ilan University.  Steve Elbaz is a Co-Founder and Chief Business Officer of the new technology.
Nano-Drops achieve their optical effect and correction by locally modifying the corneal refractive index. The magnitude and nature of the optical correction is adjusted by an optical pattern that is stamped onto the superficial layer of the corneal epithelium with a laser source. The shape of the optical pattern can be adjusted for correction of myopia (nearsightedness), hyperopia (farsightedness) or presbyopia (loss of accommodation ability). The laser stamping onto the cornea takes a few milliseconds and enables the nanoparticles to enhance and ‘activate’ this optical pattern by locally changing the refractive index and ultimately modifying the trajectory of light passing through the cornea.

The laser stamping source does not relate to the commonly known ‘laser treatment for visual correction’ that ablates corneal tissue. It is rather a small laser device that can connect to a smartphone and stamp the optical pattern onto the corneal epithelium by placing numerous adjacent pulses in a very speedy and painless fashion.  Tiny corneal spots created by the laser allow synthetic and biocompatible nanoparticles to enter and locally modify the optical power of the eye at the desired correction.

In the future this technology may enable patients to have their vision corrected in the comfort of their own home. To accomplish this, they would open an application on their smartphone to measure their vision, connect the laser source device for stamping the optical pattern at the desired correction, and then apply the Nano-Drops to activate the pattern and provide the desired correction.

Upcoming in-vivo experiments in rabbits will allow the researchers to determine how long the effect of the Nano-Drops will last after the initial application. Meanwhile, this promising technology has been shown, through ex-vivo experiments, to efficiently correct nearly 3 diopters of both myopia and presbyopia in pig eyes.

Posted on Leave a comment

ContinUse Biometrics one of ten start-ups to take first place in 2018 Prism Awards for breakthrough applications in photonics

Company recognized for its development by Bar-Ilan University engineering professor of a biometric sensing system that detects biomedical parameters from a distance without human contact

Israeli start-up ContinUse Biometrics is among the ten first-place winners of the prestigious 2018 Prism Award (the Oscar of the photonics industry) for the Medical and Health category.  The company is being recognized for its invention of an optical sensing system (sensory camera) in a competition sponsored by Photonics and SPIE Media This is the tenth year that the competition has been held.

“We chose the ten companies that introduced the greatest innovation and creativity in their products and showed impressive data and performance in every possible parameter.  These are inventions that, without a doubt, advance the photonics industry and its prosperity,” noted the organizers of the competition.

ContinUse Biometrics took first place for its laser-based detector and camera that remotely and accurately identify nanoscale movements.  The sensor is aimed at the subject, enabling accurate physiological data to be obtained.

ContinUse Biometrics focuses on developing novel devices for the health field in general and preventive medicine in particular — for use in the home, the vehicle, the workplace and the clinic.  Its products enable ongoing monitoring of vital indicators and patients suffering from chronic diseases such as heart disease, respiratory diseases, and more.

The products developed by ContinUse Biometrics is ideal for senior citizens by virtue of the fact that it transfers medical care from the doctor’s office to the home environment and alerts medical professionals to any change in vital indicators.  The attending physician receives all the readings remotely and provides appropriate medical instructions to the patient. This Telemedicine platform has the potential to minimize visits to clinics and/or hospitalization, while monitoring the patient in his own home in a comfortable, non-contact environment and increased level of service.

The detector is based on the development of Bar-Ilan University engineering professor Zeev Zalevsky, Chief Technology Officer of ContinUse Biometrics. . The detector identifies several groups of physiological parameters including vital signs such as heartbeat,, breathing and blood pressure; allows for listening to heart and breathing sounds (much like a stethoscope); identifies changes in peripheral blood flow patterns; identifies hematologic parameters; identifies people according to their heart tone; and provides muscle and bone measurements including changes in muscle tone and detection of fractures. All measurements are conducted remotely, with no human contact.

The response of medical markets to this development has been most enthusiastic, and the business potential is estimated at hundreds of millions of dollars. In addition, the company plans to activate the sensor in clinics and operating rooms. In this framework, the company will perform several hospital clinical trials over the coming year.

ContinUse Biometrics was founded by CEO Asher Polani with assistance from Bar-Ilan University’s BIRAD Research and Development Company Ltd., which promotes the commercialization of innovative technologies invented by university researchers, and encourages scientists to advance and expand their research with an eye toward industrial applications.

For further information, contact: Merav Burstein, BIRAD Research and Development Company Ltd., 077-3643534, 052-2229330,