Leave a comment

בבר-אילן נאחזים בכל שטח ומסרבים להתפנות

באוניברסיטת בר-אילן פתחו חומר כימי המאפשר לייצר צבעים קוטלי חיידקים

קיימים בשוק עוד צבעים כאלה, הנקראים ‘אנטי-בקטריאליים’, אבל החומר החדש זול מהם בסדר גודל, פי שלוש קטלני מהם, פי שבע פחות רעיל לבני אדם, משמר את היכולת הזו הרבה יותר זמן (חודשים ושנים) ומכסה מספר רב של סוגי חיידקים.

 פרופ’ שי רהימיפור מהמחלקה לכימה באוניברסיטת בר-אילן פיתח מוצר כימי המאפשר להצמיד חומר מועיל למשטחים. החומר יאפשר לייצר צבעים קוטלי חיידקים, משחקי ילדים המונעים העברת מחלות, תחבושות היגיניות המונעות ריח, פלסטרים מחטאים ועוד – חומרים שבהם נדרשת גם הצמדה חזקה ויציבה למשטח, וגם תכונות כימיות מועילות.

“החומר הזה אינו המצאה מקורית שלנו” מודה פרופ’ רהימיפור. “הוא מבוסס על תצפיות בתכונה מופלאה של בעל חיים קטן שכולנו מכירים”. התכונה הזו נחקרה כבר בעבר ע״י מדענים אחרים, והחומר הגורם לה בודד ואופיין. צוות חוקרים בצוות של פרופ׳ רהימיפור המציאו שיטה חדשה ויעילה מאוד להכין חלקיקים ננומטרים של החומר – ואלה משחזרים את היכולת של בעל החיים להיצמד למשטחים שונים. יחד עם זאת, תכננו החוקרים את המולקולה של החומר בדרך המאפשרת להעשיר אותו בקלות במגוון רחב של תכונות שימושיות חדשות – תכונות שבעל החיים בטבע אינו צריך כלל.

“תארו לכם, למשל, שאנו מציעים ליצרן צבעים תוסף לצבע שבזכותו חיידקים הנוחתים על הקיר הצבוע נקטלים מייד. הקיר הצבוע שומר על התכונה הזו חודשים ארוכים, ואפילו שנים” אומר פרופ’ רהימיפור כשהוא מתכוון לצביעה של קירות בבתי חולים, ריהוט בגני ילדים, או חדרים בבתי ילדים ובמעונות.

ד”ר פרנסיס שליט, סמנכ”לית לפיתוח עסקי בביראד (החברה הממונה על מיסחור ההמצאות של אוניברסיטת בר-אילן) מסבירה את החשיבות של ההמצאה: “קיימים בשוק עוד צבעים כאלה, הנקראים ‘אנטי-בקטריאליים’, אבל החומר של שי זול מהם בסדר גודל, פי שלוש קטלני מהם, פי שבע פחות רעיל לבני אדם, משמר את היכולת הזו הרבה יותר זמן (חודשים ושנים) ומכסה מספר רב של סוגי חיידקים”. ד”ר שליט משוכנעת שתעשיות רבות ירצו להוסיף את החומר הזה למוצרים שלהן ולזכות בתכונות חשובות בעלות נמוכה.

ביראד התחילה כבר את נסיונות השיווק של הרישיון לחומר הזה – בשלב זה בוחנים את החומר מפעלים ישראליים המפתחים תחבושות ופדים ומפעלים המפתחים צבעים לשימוש תעשייתי וביתי. בהמשך תרחיב האוניברסיטה את היישומים של החומר לתחומים תעשייתיים נוספים ולשוק הבינלאומי.

“הטבע מלמד אותנו חלק מחוכמתו” אומר פרופ’ רהימיפור בחיוך. “והמזל שלנו הוא שהטבע אינו רושם פטנטים על המצאותיו ומאפשר לחוקרים לבסס המצאות חדשות על התבונה שלו. על המצאות אלו ניתן לרשום פטנטים ואז להעניק רשיונות לתעשייה”.

ביראד תרצה לשקול יישומים נוספים לחומר הזה – מצבים שבהם קיים חומר בעל יכולת מועילה מאוד, וצריך דרך להצמיד אותו למשטחים כך שיישאר צמוד למשטח וישחרר את החומר המועיל לאט לאט, לאורך שנים.

לפרטים : מירב בורשטיין. 077-3643534, 052-2229330. Merav@birad.biz

Posted on Leave a comment

This is where transected nerves are regenerated – A new Israeli patent

Professor Orit Shefi, head of BIU’s Neuro-Engineering and Regeneration Laboratory, in Bar-Ilan’s Faculty of Engineering, has invented a method to dramatically enhance the healing of damage stemming from transected nerves. Successful repair of a transected nerve can restore sensory perception and functional recovery to limbs paralyzed in an accident or an injury. This invention has been recently registered as an international patent, through BIRAD – Research & Development Company Ltd, Bar-Ilan University’s commercializing company.

The regenerating process of a transected nerve is similar to the process of repairing a torn water pipe: a different nerve autograft or a conduit made of elastic material (for e.g. Collagen gel which is natural for the body) is implanted and very carefully connected to both nerve endings (a gap is often created between the two nerve endings due to the injury, and the conduit bridges this gap). Neuron cells from the connected side of the cell (the one leading from the brain) start to advance inside the conduit towards the disconnected part of the nerve and to the damaged organ. When the nerve cells reach the target organ, neuronal activity begins through the conduit and the regenerated nerve. Implanting the conduit and connecting it at both ends is surgically performed.

A full or empty conduit? In order for the nerve cells to advance along the conduit, it may be beneficial to fill the conduit with a substance that is ready to host the nerve cells and enable them to advance and provide support. This substance can also be based on Collagen fibers. The nerve cells advance along the Collagen fibers relying on them as physical cues. This is precisely the problem – filling the conduit with a biomimetic material is a challenge that many labs are trying to solve – which professor Shefi has solved through her invention:

If the conduit is implanted when it’s full of Collagen and the fibers are aligned with the conduit’s direction – it’s easy for the nerve cells (since they know where to advance), but difficult for the surgeon. Imagine a plumber who has to connect two pipes using a piece of pipe full of water, without spilling the water.

If the conduit is implanted when it’s empty, and the Collagen is injected into it as a gel consisting of messy fibers after it’s connected – it’s easy for the surgeon, and difficult for the nerve cells: they have to make their way through entangled fibers which do not point in the right direction. They have to reach an unfamiliar destination with no map or Waze. In other words – the regeneration and healing process will be extremely lengthy.

So which do we prefer? A difficult dilemma – will we prefer a simple operation and a lengthy recovery, or a complicated operation and a short recovery? “We’ll prefer one and the other” says Prof. Orit Shefi, “A simple operation with an empty conduit, and directed fibers which conduct the nerve cells directly to the other end of the conduit”. Our invention enables this vision in a way that can be explained simply: “We will create a gel with magnetic substance in it” she explains, “We’ll connect the nerve endings to the empty conduit. We’ll inject this gel into the conduit. It will remain liquified for a few minutes, and then coagulate. During those few minutes, we’ll keep a strong magnet pointed in the right direction next to the body. All the Collagen fibers will align according to the magnet. We’ll hold the magnet until the gel solidifies and its fibers are aligned. We will dispose of the magnet, and the fibers will remain pointing in the right direction.”

This invention is patent protected, and using it surgeons will be able to revive paralyzed limbs,” says the researcher Merav Antman Passig who’s dissertation was conducted in this research, “and maybe, in the future, a paralyzed body as well.” It will happen if the procedure will be able to connect a severed spinal cord using the gel. This option is unavailable today, and Merav hopes that if the invention will be developed into a medicinal product, in the future, people with upper-limb paralysis will be able to move their hand and wave their appreciation to the university and to science.

Dr. Frances Shalit, Senior VP of Business Development in BIRAD, states: “We have already begun looking for a company that is suitable for implementing the invention, and BIRAD, naturally, reaches out initially to companies which manufacture solutions for neuro connectivity. Every business factor that wants to take part in completing the research and to own rights of the invention, is welcome to reach out to Birad and take an interest.”

 

For further details: Merav Burstein 972-77-3643534, 972-52-2229330 Merav@biraz.biz

 

Posted on 3 Comments

CogniFiber has been selected to take part in Intel’s Ingenuity Partner Program (Intel IPP)

As part of the program, CogniFiber will be mentored by experts from Intel’s business organizations, will be exposed to state-of-the-art technology, along with an educational infrastructure and local and international events.

CogniFiber has been chosen to participate in the fourth cycle of Intel’s prestigious program for leveraging startups. The program’s framework is based on a demo and POC which is built on defining joint project goals for CogniFiber and Intel. The company will gain mentoring by experts from Intel’s business organizations, will be exposed to state-of-the-art technology, together with an educational infrastructure and local and international events.

Cognifiber is a leader in the field of photonic computing, the emerging technology of the next decades. The primary development of the technology on which the company was founded was done by Dr. Eyal Cohen, who performed a post-doctorate research in the laboratory of Prof. Zeev Zalevsky, from the Faculty of Engineering, in Bar-Ilan university in collaboration with Dr. Mickey London from The Interdisciplinary Center for Neural Computation (ICNC), The Hebrew University of Jerusalem, as an additional advisor. Dr. Eyal Cohen approached the two with a proposal to carry out the research and with Prof. Zalevsky’s extensive experience, promoted the research and its commercialization through BIRAD, Research & Development company Ltd. and the Deputy President of Bar-Ilan university.

Dr. Eyal Cohen together with Prof. Zalevsky and Ms. Keren Levy, who served as a business advisor for the company, co-founded the company. Dr. Eyal Cohen, acts as the leading entrepreneur and company CEO, Prof. Zeev Zalevsky is the company CTO and Keren Levy acts as the company COO.

CogniFiber implements advanced algorithms such as machine learning and deep learning neural networks within unique optic fibers, which enable up to 10,000x acceleration in computation rate, coupled with a staggering 10x-100x reduction in power consumption and heat dissipation, at these computation rates. CogniFiber’s photonic devices will not only revolutionize the world of AI and computing, but will also make AI cheaper, more mobile and more accessible. In-fiber photonic computing devices can deliver a solution for the ever-growing processing needs, they are easy to manufacture, scalable, fault-resistant, and could be connected to any existing communication platform.

Intel’s IPP program is open (every cycle) for about 10 companies and offers them 6-8-months of professional mentoring framework to improve their technology and products, while leveraging on Intel’s technological resources, global presence, and vast network of business connections, in preparation for a successful market penetration. The program is in collaboration with Intel Capital, one of the world’s biggest Venture Capitals, which enables entrepreneurs direct access to this track.

The IPP program, which began operating in 2015, has accompanied about 30 companies, which raised a total of 281 million dollars between them in the past three years. 93% of the companies are still active, and Intel does not demand or take equity or percentages.

With the purchase of Mobileye, Replay, and positioning Intel as a data company, Intel is without a doubt a central player in all emerging and exciting technologies of today’s industry and acts as an excellent source for entrepreneurs who want to accelerate their product or technology.

http://www.Intel.com/ipp

BIRAD:

Birad – Research & Development Company Ltd. the commercializing company of Bar-Ilan University, which promotes innovative technology commercialization, invented by university researchers, encourages scientists to promote their researches and expand them towards industrial and implementational initiatives.

Additional details at the company’s site: www.birad.biz

For additional info regarding CogniFiber: http://www.cognifiber.com

For additional details: Merav Burstein – 052-2229330 – merav@birad.biz

 

 

Posted on Leave a comment

ContinUse Biometrics one of ten start-ups to take first place in 2018 Prism Awards for breakthrough applications in photonics

Company recognized for its development by Bar-Ilan University engineering professor of a biometric sensing system that detects biomedical parameters from a distance without human contact

Israeli start-up ContinUse Biometrics is among the ten first-place winners of the prestigious 2018 Prism Award (the Oscar of the photonics industry) for the Medical and Health category.  The company is being recognized for its invention of an optical sensing system (sensory camera) in a competition sponsored by Photonics and SPIE Media This is the tenth year that the competition has been held.

“We chose the ten companies that introduced the greatest innovation and creativity in their products and showed impressive data and performance in every possible parameter.  These are inventions that, without a doubt, advance the photonics industry and its prosperity,” noted the organizers of the competition.

ContinUse Biometrics took first place for its laser-based detector and camera that remotely and accurately identify nanoscale movements.  The sensor is aimed at the subject, enabling accurate physiological data to be obtained.

ContinUse Biometrics focuses on developing novel devices for the health field in general and preventive medicine in particular — for use in the home, the vehicle, the workplace and the clinic.  Its products enable ongoing monitoring of vital indicators and patients suffering from chronic diseases such as heart disease, respiratory diseases, and more.

The products developed by ContinUse Biometrics is ideal for senior citizens by virtue of the fact that it transfers medical care from the doctor’s office to the home environment and alerts medical professionals to any change in vital indicators.  The attending physician receives all the readings remotely and provides appropriate medical instructions to the patient. This Telemedicine platform has the potential to minimize visits to clinics and/or hospitalization, while monitoring the patient in his own home in a comfortable, non-contact environment and increased level of service.

The detector is based on the development of Bar-Ilan University engineering professor Zeev Zalevsky, Chief Technology Officer of ContinUse Biometrics. . The detector identifies several groups of physiological parameters including vital signs such as heartbeat,, breathing and blood pressure; allows for listening to heart and breathing sounds (much like a stethoscope); identifies changes in peripheral blood flow patterns; identifies hematologic parameters; identifies people according to their heart tone; and provides muscle and bone measurements including changes in muscle tone and detection of fractures. All measurements are conducted remotely, with no human contact.

The response of medical markets to this development has been most enthusiastic, and the business potential is estimated at hundreds of millions of dollars. In addition, the company plans to activate the sensor in clinics and operating rooms. In this framework, the company will perform several hospital clinical trials over the coming year.

ContinUse Biometrics was founded by CEO Asher Polani with assistance from Bar-Ilan University’s BIRAD Research and Development Company Ltd., which promotes the commercialization of innovative technologies invented by university researchers, and encourages scientists to advance and expand their research with an eye toward industrial applications.

For further information, contact: Merav Burstein, BIRAD Research and Development Company Ltd., 077-3643534, 052-2229330, Merav@birad.biz

 

 

Posted on Leave a comment

A physicist from Bar Ilan’s Institute for Nanotechnology and Advanced Materials and her colleagues in the QUANTOX project are developing a Quantum computer funded by the prestigious QuantERA Fund

Dr. Beena Kalisky, from the Department of Physics and Bar Ilan’s Institute for Nanotechnology and Advanced Materials, together with researchers from France, Italy, the Netherlands, Spain and Sweden, are developing Quantum Technology using 2D interfaces created between oxides as part of the QUANTOX project (QUANtum Technologies with 2D-Oxides).

The research is budgeted by QuantERA, a European Research Fund, that brings together 31 research funding agencies from 26 countries, coordinated by the National Science Centre in Poland, and the Israel Innovation Authority (formerly known as “The Chief Scientist”).

Developing a quantum computer is one of the most desirable objectives today, and researches in the field are supported by powerful organizations such as Microsoft, Bell Labs, IBM and Google. Quantum computation will have a major effect on the computer’s performance and information security. Developing such a computer first requires the development of a basic memory cell, Qubit, using technology which is topologically protected. Despite the immense technological challenge, the advantage of such computers in speedy calculations and noise resistance, lead the significant investment in research and development of the field.

The proposed approach of the research team of QUANTOX is to use the diverse characteristics of Oxide interfaces to develop Quantum Topological systems that can be easily integrated within the current technology. These interfaces possess a unique combination of physical qualities that according to theoretical forecasts, will enable the implementation of the necessary conditions for developing a basic memory cell.

The development process is both challenging and complex. In this project the challenge is especially significant due to the technological difficulty of measuring phenomena based on minute electrical currents in substances with a 2D flow. The lab headed by Dr. Kalisky, develops highly sensitive sensors for measuring magnetic fields, and use it to map tiny magnetic fields that are generated by a small number of electrons, or very weak electrical currents. The measurement is conducted in Dr. Kalisky’s lab, in a local and non-invasive fashion, allowing feedback for the development process, even before reaching the complex stages of connecting a memory cell to the entire system, and so enabling the development to be focused and accelerated.
Beena: “The highly sensitive magnetic imaging tool which we operate in the lab is very helpful for development stages.. Especially in fields of research conducted at cold temperatures. Exciting quantum physics takes place at temperatures close to the absolute 0 and we are excited to harness our research tools to these major objectives.”

The agreement between the parties was carried out by Birad – Research & Development Company Ltd. the commercializing company of Bar-Ilan University, which promotes collaborations, corporations and alliances to manage the intellectual property, and technology commercialization by creating risk and licensing, promoting scientific service agreements through the technological knowledge and infrastructure of the University for the benefit of members of the industrial community, and outsourcing services for the business sector as part of the Division of Scientific Services.
For additional info: Merav Burstein – 052-2229330 – merav@birad.biz